ENGINEERING INFORMATION

HOW TO FIGURE HORSEPOWER AND TORQUE

TO OBTAIN	HAVING	FORMULA
Velocity (V) Feet Per Minute	Pitch Diameter (D) of Gear or Sprocket – Inches & Rev. Per Min. (RPM)	V = .2618 x D x RPM
Rev. Per Min. (RPM)	Velocity (V) Ft. Per Min. & Pitch Diameter (D) of Gear or Sprocket—Inches	$RPM = \frac{V}{.2618 \times D}$
Pitch Diameter (D) of Gear or Sprocket — Inches	Velocity (V) Ft. Per Min. & Rev. Per Min. (RPM)	D = <u>V</u> .2618 x RPM
Torque (T) In. Lbs.	Force (W) Lbs. & Radius (R) Inches	T = W x R
Horsepower (HP)	Force (W) Lbs. & Velocity (V) Ft. Per Min.	$HP = \frac{W \times V}{33000}$
Horsepower (HP)	Torque (T) In. Lbs. & Rev. Per Min. (RPM)	$HP = \frac{T \times RPM}{63025}$
Torque (T) In. Lbs.	Horsepower (HP) & Rev. Per Min. (RPM)	$T = \frac{63025 \times HP}{RPM}$
Force (W) Lbs.	Horsepower (HP) & Velocity (V) Ft. Per Min.	$W = \frac{33000 \text{ x HP}}{V}$
Rev. Per Min. (RPM)	Horsepower (HP) & Torque (T) In. Lbs.	RPM = <u>63025 x HP</u> T

POWER is the rate of doing work.

WORK is the exerting of a FORCE through a DISTANCE. ONE FOOT POUND is a unit of WORK. It is the WORK done in exerting a FORCE OF ONE POUND through a DISTANCE of ONE FOOT.

THE AMOUNT OF WORK done (Foot Pounds) is the FORCE (Pounds) exerted multiplied by the DISTANCE (Feet) through which the FORCE acts.

THE AMOUNT OF POWER used (Foot Pounds per Minute) is the WORK (Foot Pounds) done divided by the TIME (Minutes) required.

POWER (Foot Pounds per Minute) = <u>WORK (Ft. Lbs.)</u> TIME (Minutes)

POWER is usually expressed in terms of HORSEPOWER.

HORSEPOWER is POWER (Foot Pounds per Minute) divided by 33000.

HORSEPOWER (HP) = $\frac{\text{POWER (Ft. Lbs. per Minute)}}{33000}$

- = WORK (Ft. Pounds) 33000 x TIME (Min.)
 - FORCE (Lbs.) x DISTANCE (Feet)

33000 x TIME (Min.)

Cut on Dotted Lines and Keep for Quick Reference

APPLICATION FORMULAS			
1 hp = 36 lb-in. @ 1750 rpm 1 hp = 3 lb-ft. @ 1750 rpm	$OHL = \frac{2 TK}{D}$		
$hp = \frac{Torque (lbin.) x rpm}{63,025}$	OHL = Overhung Load (lb) T = Shaft Torque (lb-in)		
$hp = \frac{Force (lb) \times Velocity (ft/min.)}{33,000}$	D = PD of Sprocket, Pinion or Pulley (in.) K = Overhung Load Factor		
Velocity (ft/min.) = 0.262 x Dia. (in.) x rpm Torque (lbin) = Force (lb) x Radius (in.)	Overhung Load Factors: Sprocket or Timing Belt1.00		
Torque (lbin.) = $\frac{hp \times 63,025}{rpm}$	Pinion & Gear Drive		
Mechanical = <u>Output hp</u> x 100% Efficiency =Input hp	Pulley & Flat Belt Drive2.50 Variable Pitch Pulley3.50 kW = hp x 0.7457 in. = mm/25.4 Temp. °C = (°F - 32) x 0.556		
Output hp = $\frac{OT (lb-in.) \times Output rpm}{63,025}$			
OT = Input Torque x Ratio x Efficiency OT = Output Torque	Temp. °F = (°C x 1.8) + 32 Torque (lb-in.) = 86.6 x kg•m		
Output rpm = Input rpm Ratio	Torque (Ib-in.) = 8.85 x N•m Torque (Ib-in.) = 88.5 x daN•m		
L			
ILLUSTRATION OF HORSEPOWER			
FORCE (W) = 33,000 LBS.			
$HP = \frac{33,000 \times 1}{33,000 \times 1} = 1 HP \qquad HP = \frac{1000 \times 33}{33,000 \times 1} = 1 HP$			

TORQUE (T) is the product of a FORCE (W) in pounds, times a RADIUS (R) in inches from the center of shaft (Lever Arm) and is expressed in Inch Pounds.

T=WR=300 x 1=300 In. Lbs. T=WR=150 x 2=300 In. Lbs. If the shaft is revolved, the FORCE (W) is moved through a distance, and WORK is done.

WORK (Ft. Pounds) = W x $\frac{2\pi R}{12}$ x No. of Rev. of Shaft.

When this WORK is done in a specified TIME, POWER is used. POWER (Ft. Pounds per Min.) = W x $\frac{2\pi R}{12}$ x RPM

Since (1) HORSEPOWER = 33,000 Foot Pounds per Minute HORSEPOWER (HP) = W x $\frac{2\pi R}{12}$ x $\frac{RPM}{33,000}$ = $\frac{WxRxRPM}{63,025}$ but TORQUE (Inch Pounds) = FORCE (W) X RADIUS (R) Therefore HORSEPOWER (HP) = $\frac{TORQUE (T) \times RPM}{63,025}$

BOSTON GEAR®