ENGINEERING INFORMATION

HOW TO FIGURE HORSEPOWER AND TORQUE

TO OBTAIN	HAVING	FORMULA
Velocity (V) Feet Per Minute	Pitch Diameter (D) of Gear or Sprocket - Inches \& Rev. Per Min. (RPM)	$\mathrm{V}=.2618 \times \mathrm{D} \times \mathrm{RPM}$
Rev. Per Min. (RPM)	Velocity (V) Ft. Per Min. \& Pitch Diameter (D) of Gear or Sprocket-Inches	$\mathrm{RPM}=\frac{\mathrm{V}}{.2618 \times \mathrm{D}}$
Pitch Diameter (D) of Gear or Sprocket - Inches	Velocity (V) Ft. Per Min. \& Rev. Per Min. (RPM)	$\mathrm{D}=\frac{\mathrm{V}}{.2618 \times \mathrm{RPM}}$
Torque (T) In. Lbs.	 Radius (R) Inches	$\mathrm{T}=\mathrm{W} \times \mathrm{R}$
Horsepower (HP)	 Velocity (V) Ft. Per Min.	$\mathrm{HP}=\frac{\mathrm{W} \times \mathrm{V}}{33000}$
Horsepower (HP)	 Rev. Per Min. (RPM)	$\mathrm{HP}=\frac{\mathrm{T} \times \mathrm{RPM}}{63025}$
Torque (T) In. Lbs.	Horsepower (HP) \& Rev. Per Min. (RPM)	$\mathrm{T}=\frac{63025 \times \mathrm{HP}}{\mathrm{RPM}}$
Force (W) Lbs.	 Velocity (V) Ft. Per Min.	$\mathrm{W}=\frac{33000 \times \mathrm{HP}}{\mathrm{V}}$
Rev. Per Min. (RPM)	 Torque (T) In. Lbs.	$\mathrm{RPM}=\frac{63025 \times \mathrm{HP}}{\mathrm{T}}$

POWER is the rate of doing work.
WORK is the exerting of a FORCE through a DISTANCE. ONE FOOT POUND is a unit of WORK. It is the WORK done in exerting a FORCE OF ONE POUND through a DISTANCE of ONE FOOT.

THE AMOUNT OF WORK done (Foot Pounds) is the FORCE (Pounds) exerted multiplied by the DISTANCE (Feet) through which the FORCE acts.
THE AMOUNT OF POWER used (Foot Pounds per Minute) is the WORK (Foot Pounds) done divided by the TIME (Minutes) required.
POWER (Foot Pounds per Minute) $=\frac{\text { WORK (Ft. Lbs.) }}{\text { TIME (Minutes) }}$
POWER is usually expressed in terms of HORSEPOWER.

HORSEPOWER is POWER (Foot Pounds per Minute) divided by 33000 .

$$
\begin{aligned}
\text { HORSEPOWER (HP) } & =\frac{\text { POWER (Ft. Lbs. per Minute) }}{33000} \\
& =\frac{\text { WORK (Ft. Pounds) }}{33000 \times \text { TIME (Min.) }} \\
& =\frac{\text { FORCE (Lbs.) } \times \text { DISTANCE (Feet) }}{33000 \times \text { TIME (Min.) }} \\
& =\frac{\text { FORCE (Lbs.) } \times \text { DISTANCE (Feet) }}{33000 \times \text { TIME (Min.) }}
\end{aligned}
$$

Cut on Dotted Lines and Keep for Quick Reference

TORQUE (T) is the product of a FORCE (W) in pounds, times a RADIUS (R) in inches from the center of shaft (Lever Arm) and is expressed in Inch Pounds.

$T=W R=300 \times 1=300 \mathrm{In}$. Lbs. $\quad \mathrm{T}=\mathrm{WR}=150 \times 2=300 \mathrm{In} . \mathrm{Lbs}$. If the shaft is revolved, the FORCE (W) is moved through a distance, and WORK is done.
WORK (Ft. Pounds) $=\mathrm{W} \times \frac{2 \pi \mathrm{R}}{12} \times$ No. of Rev. of Shaft.
When this WORK is done in a specified TIME, POWER is used. POWER (Ft. Pounds per Min.) $=W \times \frac{2 \pi R}{12} \times$ RPM
Since (1) HORSEPOWER $=33,000$ Foot Pounds per Minute HORSEPOWER $(H P)=W \times \frac{2 \pi R}{12} \times \frac{R P M}{33,000}=\frac{W \times R x R P M}{63,025}$ but TORQUE (Inch Pounds) $=$ FORCE (W) X RADIUS (R) Therefore HORSEPOWER $(H P)=\frac{\text { TORQUE }(T) \times \text { RPM }}{63,025}$

